Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences

Identifieur interne : 000214 ( PascalFrancis/Corpus ); précédent : 000213; suivant : 000215

In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences

Auteurs : D. M. Cunnold ; L. P. Steele ; P. J. Fraser ; P. G. Simmonds ; R. G. Prinn ; R. F. Weiss ; L. W. Porter ; S. O'Doherty ; R. L. Langenfelds ; P. B. Krummel ; H. J. Wang ; L. Emmons ; X. X. Tie ; E. J. Dlugokencky

Source :

RBID : Pascal:02-0590214

Descripteurs français

English descriptors

Abstract

[i] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH4 with a variability of only ±20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 ± 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30°-90°S of 0 ± 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 107
A06       @2 D14
A08 01  1  ENG  @1 In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences
A11 01  1    @1 CUNNOLD (D. M.)
A11 02  1    @1 STEELE (L. P.)
A11 03  1    @1 FRASER (P. J.)
A11 04  1    @1 SIMMONDS (P. G.)
A11 05  1    @1 PRINN (R. G.)
A11 06  1    @1 WEISS (R. F.)
A11 07  1    @1 PORTER (L. W.)
A11 08  1    @1 O'DOHERTY (S.)
A11 09  1    @1 LANGENFELDS (R. L.)
A11 10  1    @1 KRUMMEL (P. B.)
A11 11  1    @1 WANG (H. J.)
A11 12  1    @1 EMMONS (L.)
A11 13  1    @1 TIE (X. X.)
A11 14  1    @1 DLUGOKENCKY (E. J.)
A14 01      @1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology @2 Atlanta, Georgia @3 USA @Z 1 aut. @Z 11 aut.
A14 02      @1 Atmospheric Research, Commonwealth Scientific and Industrial Research Organization @2 Aspendale, Victoria @3 AUS @Z 2 aut. @Z 3 aut. @Z 9 aut. @Z 10 aut.
A14 03      @1 School of Chemistry, University of Bristol @2 Bristol @3 GBR @Z 4 aut. @Z 8 aut.
A14 04      @1 Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology @2 Cambridge, Massachusetts @3 USA @Z 5 aut.
A14 05      @1 Scripps Institution of Oceanography, University of California at San Diego @2 La Jolla, California @3 USA @Z 6 aut.
A14 06      @1 Cape Grim Baseline Air Pollution Station, Bureau of Meteorology @2 Smithton, Tasmania @3 AUS @Z 7 aut.
A14 07      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 12 aut. @Z 13 aut.
A14 08      @1 Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration @2 Boulder, Colorado @3 USA @Z 14 aut.
A20       @2 ACH 20.1-ACH 20.18
A21       @1 2002
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000105376120430
A44       @0 0000 @1 © 2002 INIST-CNRS. All rights reserved.
A45       @0 1 p.1/4
A47 01  1    @0 02-0590214
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [i] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH4 with a variability of only ±20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 ± 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30°-90°S of 0 ± 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.
C02 01  X    @0 001E02D04
C03 01  X  FRE  @0 Mesure in situ @5 26
C03 01  X  ENG  @0 Measurement in situ @5 26
C03 01  X  SPA  @0 Medición en sitio @5 26
C03 02  X  FRE  @0 Méthane @2 NK @2 FX @5 27
C03 02  X  ENG  @0 Methane @2 NK @2 FX @5 27
C03 02  X  SPA  @0 Metano @2 NK @2 FX @5 27
C03 03  X  FRE  @0 Monitorage @5 28
C03 03  X  ENG  @0 Monitoring @5 28
C03 03  X  SPA  @0 Monitoreo @5 28
C03 04  X  FRE  @0 Modèle boîte @5 29
C03 04  X  ENG  @0 Box model @5 29
C03 04  X  SPA  @0 Modelo caja @5 29
C03 05  X  FRE  @0 Modèle atmosphère @5 30
C03 05  X  ENG  @0 Atmosphere model @5 30
C03 05  X  SPA  @0 Modelo atmósfera @5 30
C03 06  X  FRE  @0 Emission gaz @5 31
C03 06  X  ENG  @0 Gas emission @5 31
C03 06  X  SPA  @0 Emisión gas @5 31
C03 07  X  FRE  @0 Répartition spatiale @5 32
C03 07  X  ENG  @0 Spatial distribution @5 32
C03 07  X  SPA  @0 Distribución espacial @5 32
C03 08  X  FRE  @0 Variation annuelle @5 33
C03 08  X  ENG  @0 Annual variation @5 33
C03 08  X  SPA  @0 Variación anual @5 33
C03 09  X  FRE  @0 Troposphère @5 34
C03 09  X  ENG  @0 Troposphere @5 34
C03 09  X  SPA  @0 Troposfera @5 34
C03 10  X  FRE  @0 Echelle planétaire @5 35
C03 10  X  ENG  @0 Planetary scale @5 35
C03 10  X  SPA  @0 Escala planetaria @5 35
N21       @1 351
N82       @1 PSI

Format Inist (serveur)

NO : PASCAL 02-0590214 INIST
ET : In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences
AU : CUNNOLD (D. M.); STEELE (L. P.); FRASER (P. J.); SIMMONDS (P. G.); PRINN (R. G.); WEISS (R. F.); PORTER (L. W.); O'DOHERTY (S.); LANGENFELDS (R. L.); KRUMMEL (P. B.); WANG (H. J.); EMMONS (L.); TIE (X. X.); DLUGOKENCKY (E. J.)
AF : School of Earth and Atmospheric Sciences, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (1 aut., 11 aut.); Atmospheric Research, Commonwealth Scientific and Industrial Research Organization/Aspendale, Victoria/Australie (2 aut., 3 aut., 9 aut., 10 aut.); School of Chemistry, University of Bristol/Bristol/Royaume-Uni (4 aut., 8 aut.); Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology/Cambridge, Massachusetts/Etats-Unis (5 aut.); Scripps Institution of Oceanography, University of California at San Diego/La Jolla, California/Etats-Unis (6 aut.); Cape Grim Baseline Air Pollution Station, Bureau of Meteorology/Smithton, Tasmania/Australie (7 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (12 aut., 13 aut.); Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration/Boulder, Colorado/Etats-Unis (14 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2002; Vol. 107; No. D14; ACH 20.1-ACH 20.18; Bibl. 1 p.1/4
LA : Anglais
EA : [i] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH4 with a variability of only ±20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 ± 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30°-90°S of 0 ± 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.
CC : 001E02D04
FD : Mesure in situ; Méthane; Monitorage; Modèle boîte; Modèle atmosphère; Emission gaz; Répartition spatiale; Variation annuelle; Troposphère; Echelle planétaire
ED : Measurement in situ; Methane; Monitoring; Box model; Atmosphere model; Gas emission; Spatial distribution; Annual variation; Troposphere; Planetary scale
SD : Medición en sitio; Metano; Monitoreo; Modelo caja; Modelo atmósfera; Emisión gas; Distribución espacial; Variación anual; Troposfera; Escala planetaria
LO : INIST-3144.354000105376120430
ID : 02-0590214

Links to Exploration step

Pascal:02-0590214

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences</title>
<author>
<name sortKey="Cunnold, D M" sort="Cunnold, D M" uniqKey="Cunnold D" first="D. M." last="Cunnold">D. M. Cunnold</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steele, L P" sort="Steele, L P" uniqKey="Steele L" first="L. P." last="Steele">L. P. Steele</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fraser, P J" sort="Fraser, P J" uniqKey="Fraser P" first="P. J." last="Fraser">P. J. Fraser</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Simmonds, P G" sort="Simmonds, P G" uniqKey="Simmonds P" first="P. G." last="Simmonds">P. G. Simmonds</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Chemistry, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prinn, R G" sort="Prinn, R G" uniqKey="Prinn R" first="R. G." last="Prinn">R. G. Prinn</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weiss, R F" sort="Weiss, R F" uniqKey="Weiss R" first="R. F." last="Weiss">R. F. Weiss</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Scripps Institution of Oceanography, University of California at San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Porter, L W" sort="Porter, L W" uniqKey="Porter L" first="L. W." last="Porter">L. W. Porter</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Cape Grim Baseline Air Pollution Station, Bureau of Meteorology</s1>
<s2>Smithton, Tasmania</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="O Doherty, S" sort="O Doherty, S" uniqKey="O Doherty S" first="S." last="O'Doherty">S. O'Doherty</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Chemistry, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Langenfelds, R L" sort="Langenfelds, R L" uniqKey="Langenfelds R" first="R. L." last="Langenfelds">R. L. Langenfelds</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Krummel, P B" sort="Krummel, P B" uniqKey="Krummel P" first="P. B." last="Krummel">P. B. Krummel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, H J" sort="Wang, H J" uniqKey="Wang H" first="H. J." last="Wang">H. J. Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L" sort="Emmons, L" uniqKey="Emmons L" first="L." last="Emmons">L. Emmons</name>
<affiliation>
<inist:fA14 i1="07">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tie, X X" sort="Tie, X X" uniqKey="Tie X" first="X. X." last="Tie">X. X. Tie</name>
<affiliation>
<inist:fA14 i1="07">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dlugokencky, E J" sort="Dlugokencky, E J" uniqKey="Dlugokencky E" first="E. J." last="Dlugokencky">E. J. Dlugokencky</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">02-0590214</idno>
<date when="2002">2002</date>
<idno type="stanalyst">PASCAL 02-0590214 INIST</idno>
<idno type="RBID">Pascal:02-0590214</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000214</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences</title>
<author>
<name sortKey="Cunnold, D M" sort="Cunnold, D M" uniqKey="Cunnold D" first="D. M." last="Cunnold">D. M. Cunnold</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Steele, L P" sort="Steele, L P" uniqKey="Steele L" first="L. P." last="Steele">L. P. Steele</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Fraser, P J" sort="Fraser, P J" uniqKey="Fraser P" first="P. J." last="Fraser">P. J. Fraser</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Simmonds, P G" sort="Simmonds, P G" uniqKey="Simmonds P" first="P. G." last="Simmonds">P. G. Simmonds</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Chemistry, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Prinn, R G" sort="Prinn, R G" uniqKey="Prinn R" first="R. G." last="Prinn">R. G. Prinn</name>
<affiliation>
<inist:fA14 i1="04">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Weiss, R F" sort="Weiss, R F" uniqKey="Weiss R" first="R. F." last="Weiss">R. F. Weiss</name>
<affiliation>
<inist:fA14 i1="05">
<s1>Scripps Institution of Oceanography, University of California at San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Porter, L W" sort="Porter, L W" uniqKey="Porter L" first="L. W." last="Porter">L. W. Porter</name>
<affiliation>
<inist:fA14 i1="06">
<s1>Cape Grim Baseline Air Pollution Station, Bureau of Meteorology</s1>
<s2>Smithton, Tasmania</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="O Doherty, S" sort="O Doherty, S" uniqKey="O Doherty S" first="S." last="O'Doherty">S. O'Doherty</name>
<affiliation>
<inist:fA14 i1="03">
<s1>School of Chemistry, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Langenfelds, R L" sort="Langenfelds, R L" uniqKey="Langenfelds R" first="R. L." last="Langenfelds">R. L. Langenfelds</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Krummel, P B" sort="Krummel, P B" uniqKey="Krummel P" first="P. B." last="Krummel">P. B. Krummel</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Wang, H J" sort="Wang, H J" uniqKey="Wang H" first="H. J." last="Wang">H. J. Wang</name>
<affiliation>
<inist:fA14 i1="01">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Emmons, L" sort="Emmons, L" uniqKey="Emmons L" first="L." last="Emmons">L. Emmons</name>
<affiliation>
<inist:fA14 i1="07">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Tie, X X" sort="Tie, X X" uniqKey="Tie X" first="X. X." last="Tie">X. X. Tie</name>
<affiliation>
<inist:fA14 i1="07">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Dlugokencky, E J" sort="Dlugokencky, E J" uniqKey="Dlugokencky E" first="E. J." last="Dlugokencky">E. J. Dlugokencky</name>
<affiliation>
<inist:fA14 i1="08">
<s1>Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2002">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Annual variation</term>
<term>Atmosphere model</term>
<term>Box model</term>
<term>Gas emission</term>
<term>Measurement in situ</term>
<term>Methane</term>
<term>Monitoring</term>
<term>Planetary scale</term>
<term>Spatial distribution</term>
<term>Troposphere</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mesure in situ</term>
<term>Méthane</term>
<term>Monitorage</term>
<term>Modèle boîte</term>
<term>Modèle atmosphère</term>
<term>Emission gaz</term>
<term>Répartition spatiale</term>
<term>Variation annuelle</term>
<term>Troposphère</term>
<term>Echelle planétaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[i] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH
<sub>4</sub>
with a variability of only ±20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 ± 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30°-90°S of 0 ± 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>107</s2>
</fA05>
<fA06>
<s2>D14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>CUNNOLD (D. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>STEELE (L. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>FRASER (P. J.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SIMMONDS (P. G.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>PRINN (R. G.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WEISS (R. F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PORTER (L. W.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>O'DOHERTY (S.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>LANGENFELDS (R. L.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>KRUMMEL (P. B.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>WANG (H. J.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>EMMONS (L.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>TIE (X. X.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>DLUGOKENCKY (E. J.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Earth and Atmospheric Sciences, Georgia Institute of Technology</s1>
<s2>Atlanta, Georgia</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>11 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Atmospheric Research, Commonwealth Scientific and Industrial Research Organization</s1>
<s2>Aspendale, Victoria</s2>
<s3>AUS</s3>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>School of Chemistry, University of Bristol</s1>
<s2>Bristol</s2>
<s3>GBR</s3>
<sZ>4 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology</s1>
<s2>Cambridge, Massachusetts</s2>
<s3>USA</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Scripps Institution of Oceanography, University of California at San Diego</s1>
<s2>La Jolla, California</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="06">
<s1>Cape Grim Baseline Air Pollution Station, Bureau of Meteorology</s1>
<s2>Smithton, Tasmania</s2>
<s3>AUS</s3>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="07">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
</fA14>
<fA14 i1="08">
<s1>Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>14 aut.</sZ>
</fA14>
<fA20>
<s2>ACH 20.1-ACH 20.18</s2>
</fA20>
<fA21>
<s1>2002</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000105376120430</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2002 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>1 p.1/4</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>02-0590214</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[i] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH
<sub>4</sub>
with a variability of only ±20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 ± 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30°-90°S of 0 ± 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001E02D04</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mesure in situ</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Measurement in situ</s0>
<s5>26</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Medición en sitio</s0>
<s5>26</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Methane</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Metano</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>27</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Monitorage</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Monitoring</s0>
<s5>28</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Monitoreo</s0>
<s5>28</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Modèle boîte</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Box model</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Modelo caja</s0>
<s5>29</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Modèle atmosphère</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Atmosphere model</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Modelo atmósfera</s0>
<s5>30</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Emission gaz</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Gas emission</s0>
<s5>31</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Emisión gas</s0>
<s5>31</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Répartition spatiale</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Spatial distribution</s0>
<s5>32</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Distribución espacial</s0>
<s5>32</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Variation annuelle</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Annual variation</s0>
<s5>33</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Variación anual</s0>
<s5>33</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Troposphère</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Troposphere</s0>
<s5>34</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Troposfera</s0>
<s5>34</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Echelle planétaire</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Planetary scale</s0>
<s5>35</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Escala planetaria</s0>
<s5>35</s5>
</fC03>
<fN21>
<s1>351</s1>
</fN21>
<fN82>
<s1>PSI</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 02-0590214 INIST</NO>
<ET>In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences</ET>
<AU>CUNNOLD (D. M.); STEELE (L. P.); FRASER (P. J.); SIMMONDS (P. G.); PRINN (R. G.); WEISS (R. F.); PORTER (L. W.); O'DOHERTY (S.); LANGENFELDS (R. L.); KRUMMEL (P. B.); WANG (H. J.); EMMONS (L.); TIE (X. X.); DLUGOKENCKY (E. J.)</AU>
<AF>School of Earth and Atmospheric Sciences, Georgia Institute of Technology/Atlanta, Georgia/Etats-Unis (1 aut., 11 aut.); Atmospheric Research, Commonwealth Scientific and Industrial Research Organization/Aspendale, Victoria/Australie (2 aut., 3 aut., 9 aut., 10 aut.); School of Chemistry, University of Bristol/Bristol/Royaume-Uni (4 aut., 8 aut.); Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology/Cambridge, Massachusetts/Etats-Unis (5 aut.); Scripps Institution of Oceanography, University of California at San Diego/La Jolla, California/Etats-Unis (6 aut.); Cape Grim Baseline Air Pollution Station, Bureau of Meteorology/Smithton, Tasmania/Australie (7 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (12 aut., 13 aut.); Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration/Boulder, Colorado/Etats-Unis (14 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2002; Vol. 107; No. D14; ACH 20.1-ACH 20.18; Bibl. 1 p.1/4</SO>
<LA>Anglais</LA>
<EA>[i] Continuous measurements of methane since 1986 at the Global Atmospherics Gases Experiment/Advanced Global Atmospherics Gases Experiment (GAGE/AGAGE) surface sites are described. The precisions range from approximately 10 ppb at Mace Head, Ireland, during GAGE to better than 2 ppb at Cape Grim, Tasmania, during AGAGE (i.e., since 1993). The measurements exhibit good agreement with coincident measurements of air samples from the same locations analyzed by Climate Monitoring and Diagnostics Laboratory (CMDL) except for differences of approximately 5 ppb before 1989 (GAGE lower) and about 4 ppb from 1991 to 1995 (GAGE higher). These results are obtained before applying a factor of 1.0119 to the GAGE/AGAGE values to place them on the Tohoku University scale. The measurements combined with a 12-box atmospheric model and an assumed atmospheric lifetime of 9.1 years indicates net annual emissions (emissions minus soil sinks) of 545 Tg CH
<sub>4</sub>
with a variability of only ±20 Tg from 1985 to 1997 but an increase in the emissions in 1998 of 37 ± 10 Tg. The effect of OH changes inferred by Prinn et al. [2001] is to increase the estimated methane emissions by approximately 20 Tg in the mid-1980s and to reduce them by 20 Tg in 1997 and by more thereafter. Using a two-dimensional (2-D), 12-box model with transport constrained by the GAGE/AGAGE chlorofluorocarbon measurements, we calculate that the proportion of the emissions coming from the Northern Hemisphere is between 73 and 81%, depending on the OH distribution used. However, this result includes an adjustment of 5% derived from a simulation of the 2-D estimation procedure using the 3-D MOZART model. This adjustment is needed because of the very different spatial emission distributions of the chlorofluorocarbons and methane which makes chlorofluorocarbons derived transport rates inaccurate for the 2-D simulation of methane. The 2-D model combined with the annual cycle in OH from Spivakovsky et al. [2000] provide an acceptable fit to the observed 12-month cycles in methane. The trend in the amplitude of the annual cycle of methane at Cape Grim is used to infer a trend in OH in 30°-90°S of 0 ± 5% per decade from 1985 to 2000, in qualitative agreement with Prinn et al. [2001] for the Southern Hemisphere.</EA>
<CC>001E02D04</CC>
<FD>Mesure in situ; Méthane; Monitorage; Modèle boîte; Modèle atmosphère; Emission gaz; Répartition spatiale; Variation annuelle; Troposphère; Echelle planétaire</FD>
<ED>Measurement in situ; Methane; Monitoring; Box model; Atmosphere model; Gas emission; Spatial distribution; Annual variation; Troposphere; Planetary scale</ED>
<SD>Medición en sitio; Metano; Monitoreo; Modelo caja; Modelo atmósfera; Emisión gas; Distribución espacial; Variación anual; Troposfera; Escala planetaria</SD>
<LO>INIST-3144.354000105376120430</LO>
<ID>02-0590214</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000214 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000214 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:02-0590214
   |texte=   In situ measurements of atmospheric methane at GAGE/AGAGE sites during 1985-2000 and resulting source inferences
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023